Traced pre-monoidal categories

نویسندگان

  • Nick Benton
  • Martin Hyland
چکیده

Motivated by some examples from functional programming, we propose a generalisation of the notion of trace to symmetric premonoidal categories and of Conway operators to Freyd categories. We show that, in a Freyd category, these notions are equivalent, generalising a well-known theorem of Hasegawa and Hyland.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Foundation of Attribute Grammars in Traced Symmetric Monoidal Categories

In this paper we propose a new categorical formulation of attribute grammars in traced symmetric monoidal categories. The new formulation, called monoidal attribute grammars, concisely captures the essence of the classical attribute grammars. We study monoidal attribute grammars in two categories: Rel and ωCPPO. It turns out that in Rel monoidal attribute grammars correspond to the graphtheoret...

متن کامل

A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories

We illustrate a minor error in the biadjointness result for 2-categories of traced monoidal categories and tortile monoidal categories stated by Joyal, Street and Verity. We also show that the biadjointness holds after suitably changing the definition of 2-cells. In the seminal paper “Traced Monoidal Categories” by Joyal, Street and Verity [4], it is claimed that the Int-construction gives a le...

متن کامل

On traced monoidal closed categories

The structure theorem of Joyal, Street and Verity says that every traced monoidal category C arises as a monoidal full subcategory of the tortile monoidal category IntC. In this paper we focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into IntC has a right adjoint. Thus, every traced monoidal closed category arises as a mon...

متن کامل

Traced monoidal categories BY ANDRE JOYAL

This paper introduces axioms for an abstract trace on a monoidal category. This trace can be interpreted in various contexts where it could alternatively be called contraction, feedback, Markov trace or braid closure. Each full submonoidal category of a tortile (or ribbon) monoidal category admits a canonical trace. We prove the structure theorem that every traced monoidal category arises in th...

متن کامل

The Uniformity Principle on Traced Monoidal Categories

The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin’s principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ITA

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2002